login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051279 Numbers n such that n = k/d(k) has exactly 2 solutions, where d(k) = number of divisors of k. 13
1, 2, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 28, 29, 31, 37, 41, 43, 44, 47, 48, 52, 53, 56, 59, 61, 67, 68, 71, 73, 76, 79, 80, 81, 83, 84, 88, 89, 92, 97, 101, 103, 104, 107, 109, 113, 116, 120, 124, 127, 131, 132, 136, 137, 139, 148, 149, 151, 152, 154, 156 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Because d(k) <= 2*sqrt(k), it suffices to check k from 1 to 4*n^2. - Nathaniel Johnston, May 04 2011

A051521(a(n)) = 2. - Reinhard Zumkeller, Dec 28 2011

LINKS

Nathaniel Johnston and T. D. Noe, Table of n, a(n) for n = 1..1000 (first 150 terms from Nathaniel Johnston)

EXAMPLE

There are exactly 2 numbers k, 40 and 60, with k/d(k)=5.

MAPLE

with(numtheory): A051279 := proc(n) local ct, k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=2)then return n: else return NULL: fi: end: seq(A051279(n), n=1..40); # Nathaniel Johnston, May 04 2011

MATHEMATICA

A051279 = Reap[Do[ct = 0; For[k = 1, k <= 4*n^2, k++, If[n == k/DivisorSigma[0, k], ct++]]; If[ct == 2, Print[n]; Sow[n]], {n, 1, 160}]][[2, 1]](* Jean-Fran├žois Alcover, Apr 16 2012, after Nathaniel Johnston *)

PROG

(Haskell)

a051279 n = a051279_list !! (n-1)

a051279_list = filter ((== 2) . a051521) [1..]

-- Reinhard Zumkeller, Dec 28 2011

CROSSREFS

Cf. A033950, A036763, A051278, A051280, A051346.

Sequence in context: A047268 A039580 A189296 * A288464 A111199 A276545

Adjacent sequences:  A051276 A051277 A051278 * A051280 A051281 A051282

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, R. K. Guy, David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 20:02 EDT 2020. Contains 337265 sequences. (Running on oeis4.)