login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112571
G.f. A(x) satisfies: A(x)^2 equals the g.f. of A110637, which consists entirely of numbers 1 through 8.
1
1, 1, 3, -1, -2, 6, 0, -16, 23, 40, -140, 13, 591, -827, -1577, 5887, -500, -27095, 38922, 77859, -295183, 21310, 1428714, -2069421, -4295099, 16345171, -921876, -81760620, 118435457, 253839799, -963510264, 37372170, 4936868645, -7119213992, -15717478733, 59293735690
OFFSET
0,3
COMMENTS
A110637 is formed from every 4th term of A083948, which also consists entirely of numbers 1 through 8.
FORMULA
G.f. A(x) satisfies: A(x)^8 (mod 16) = g.f. of A083948.
EXAMPLE
A(x) = 1 + x + 3*x^2 - x^3 - 2*x^4 + 6*x^5 - 16*x^7 + 23*x^8 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 4*x^3 + 3*x^4 + 2*x^5 + x^6 + 8*x^7 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 216*x^3 + 754*x^4 + 2008*x^5 +...
A(x)^8 (mod 16) = 1 + 8*x + 4*x^2 + 8*x^3 + 2*x^4 + 8*x^5 +...
G(x) = 1 + 8*x + 4*x^2 + 8*x^3 + 2*x^4 + 8*x^5 + 4*x^6 + 8*x^7 +...
where G(x) is the g.f. of A083948.
PROG
(PARI) {a(n)=local(d=4, m=8, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(Ser(vector(n+1, i, polcoeff(A, d*(i-1))))^(1/2), n)}
CROSSREFS
Sequence in context: A048226 A049919 A246432 * A051277 A300908 A080818
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 14 2005
STATUS
approved