login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x)^2 equals the g.f. of A110637, which consists entirely of numbers 1 through 8.
1

%I #6 Mar 14 2015 10:04:43

%S 1,1,3,-1,-2,6,0,-16,23,40,-140,13,591,-827,-1577,5887,-500,-27095,

%T 38922,77859,-295183,21310,1428714,-2069421,-4295099,16345171,-921876,

%U -81760620,118435457,253839799,-963510264,37372170,4936868645,-7119213992,-15717478733,59293735690

%N G.f. A(x) satisfies: A(x)^2 equals the g.f. of A110637, which consists entirely of numbers 1 through 8.

%C A110637 is formed from every 4th term of A083948, which also consists entirely of numbers 1 through 8.

%F G.f. A(x) satisfies: A(x)^8 (mod 16) = g.f. of A083948.

%e A(x) = 1 + x + 3*x^2 - x^3 - 2*x^4 + 6*x^5 - 16*x^7 + 23*x^8 +...

%e A(x)^2 = 1 + 2*x + 7*x^2 + 4*x^3 + 3*x^4 + 2*x^5 + x^6 + 8*x^7 +...

%e A(x)^8 = 1 + 8*x + 52*x^2 + 216*x^3 + 754*x^4 + 2008*x^5 +...

%e A(x)^8 (mod 16) = 1 + 8*x + 4*x^2 + 8*x^3 + 2*x^4 + 8*x^5 +...

%e G(x) = 1 + 8*x + 4*x^2 + 8*x^3 + 2*x^4 + 8*x^5 + 4*x^6 + 8*x^7 +...

%e where G(x) is the g.f. of A083948.

%o (PARI) {a(n)=local(d=4,m=8,A=1+m*x); for(j=2,d*n, for(k=1,m,t=polcoeff((A+k*x^j+x*O(x^j))^(1/m),j); if(denominator(t)==1,A=A+k*x^j;break))); polcoeff(Ser(vector(n+1,i,polcoeff(A,d*(i-1))))^(1/2),n)}

%Y Cf. A110637, A083948.

%K sign

%O 0,3

%A _Paul D. Hanna_, Sep 14 2005