login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376543
Numbers of the form p^e * q^f with p, q distinct primes = 3 mod 4 and e and f both odd.
0
21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, 189, 201, 209, 213, 217, 237, 249, 253, 297, 301, 309, 321, 329, 341, 381, 393, 413, 417, 437, 453, 469, 473, 489, 497, 501, 513, 517, 537, 553, 573, 581, 589, 597, 621, 633, 649, 669, 681, 713, 717, 721, 737, 749, 753, 781, 789
OFFSET
1,1
COMMENTS
Murru & Salvatori refer to these as Blum integers, though that title properly rests with A016105.
LINKS
Nadir Murru and Giulia Salvatori, Integer factorization via continued fractions and quadratic forms, arXiv preprint (2024). arXiv:2409.03486 [math.NT]
PROG
(PARI) list(lim)=my(P=List(), v=List(), t, p); forstep(e=1, logint(lim\=1, 3), 2, forprimestep(p=3, sqrtnint(lim\3, e), 4, listput(P, p^e))); P=Set(P); for(i=2, #P, p=P[i]; for(j=1, i-1, t=p*P[j]; if(t>lim, break); if(gcd(p, P[j])==1, listput(v, t)))); Set(v)
CROSSREFS
A016105 is a subsequence. Subsequence of A007774.
Sequence in context: A190299 A280262 A084109 * A016105 A187073 A271101
KEYWORD
nonn
AUTHOR
STATUS
approved