login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070006
Composite numbers that are not a prime power and whose distinct prime divisors' arithmetic mean is a prime.
5
21, 33, 57, 63, 69, 85, 93, 99, 105, 129, 133, 145, 147, 171, 177, 189, 195, 205, 207, 213, 217, 231, 237, 249, 253, 265, 279, 297, 309, 315, 363, 387, 393, 417, 425, 441, 445, 465, 469, 483, 489, 493, 505, 513, 517, 525, 531, 553, 565, 567, 573, 585, 597
OFFSET
1,1
COMMENTS
Subsequence of A070005.
LINKS
EXAMPLE
n = 993 = 3*331, mean = 334/2 = 167, a prime.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=Apply[Plus, ba[n]]/lf[n]; If[PrimeQ[s]&&Greater[lf[n], 1], Print[n]], {n, 2, 1000}]
(* Second program: *)
Select[Range@ 600, And[! PrimePowerQ@ #, PrimeQ@ Mean[FactorInteger[#][[All, 1]]]] &] (* Michael De Vlieger, Jul 18 2017 *)
PROG
(PARI) lista(nn) = {for (n=2, nn, f = factor(n); if ((#f~ != 1) && (type(q=sum(k=1, #f~, f[k, 1])/#f~) == "t_INT") && isprime(q), print1(n, ", ")); ); } \\ Michel Marcus, Mar 28 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Labos Elemer, Apr 11 2002
STATUS
approved