login
A378214
Dirichlet inverse of A369255, where A369255(n) = A140773(n) mod 2.
3
1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, -1, 0, 2, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, -1, 0, 2, -1, -1, -1, 0, 0, 2, -1, 0, -1, -1, -1, 1, 0, 0, 0, 1
OFFSET
1,60
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A369255(n/d) * a(d).
PROG
(PARI)
A065043(n) = (1 - (bigomega(n)%2));
A038548(n) = sumdiv(n, d, A065043(d));
A140773(n) = sumdiv(n, d, A038548(d));
A369255(n) = (A140773(n)%2);
memoA378214 = Map();
A378214(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378214, n, &v), v, v = -sumdiv(n, d, if(d<n, A369255(n/d)*A378214(d), 0)); mapput(memoA378214, n, v); (v)));
CROSSREFS
Cf. A140773, A369255, A378213, A378215 (parity of terms).
Sequence in context: A171368 A322353 A359785 * A133988 A089812 A260942
KEYWORD
sign,new
AUTHOR
Antti Karttunen, Nov 22 2024
STATUS
approved