login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A369255
Parity of A140773, where A140773 is the inverse Möbius transform of A038548.
6
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0
OFFSET
1
COMMENTS
Also parity of the inverse Möbius transform of A369253.
FORMULA
a(n) = A000035(A140773(n)).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with both computing the first 2^20 terms correctly:
a(n) = Sum_{d|n} A007875(d)*A219009(n/d).
a(n) = Sum_{d|n} A140773(d)*A355837(n/d).
(End)
PROG
(PARI)
A038548(n) = sumdiv(n, d, 1-(bigomega(d)%2));
A369255(n) = (sumdiv(n, d, A038548(d))%2);
CROSSREFS
Characteristic function of A369256.
Sequence in context: A320656 A354819 A322075 * A378215 A288220 A173856
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 24 2024
STATUS
approved