login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123858
Expansion of q^(-1/3) * eta(q^2)^2 * eta(q^5)/eta(q) in powers of q.
1
1, 1, 0, 1, 0, -1, 0, 0, -1, 0, 0, -2, 0, -1, 0, 0, -1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 2, -2, 0, -1, 0, -1, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,12
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-q^5)*psi(q) in powers of q where f(),psi() are Ramanujan theta functions.
Euler transform of period 10 sequence [ 1, -1, 1, -1, 0, -1, 1, -1, 1, -2, ...].
G.f.: Product_{k>0} (1+x^k)*(1-x^(2k))*(1-x^(5k)).
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3) eta[q^2]^2 eta[q^5]/eta[q], {q, 0, 50}], q] (* G. C. Greubel, Apr 17 2018 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2*eta(x^5+A)/eta(x+A), n))}
(PARI) q='q+O('q^99); Vec(eta(q^2)^2*eta(q^5)/eta(q)) \\ Altug Alkan, Apr 18 2018
CROSSREFS
Sequence in context: A089812 A260942 A260162 * A193261 A283497 A265507
KEYWORD
sign
AUTHOR
Michael Somos, Oct 13 2006
STATUS
approved