login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in asymptotic expansion of sequence A259870.
5

%I #11 Aug 05 2015 04:09:32

%S 1,2,5,17,74,395,2526,19087,168603,1723065,20148031,266437102,

%T 3938754720,64391209604,1152961464743,22424127879610,470399253269776,

%U 10579865622308851,253840801521314095,6468953273455413674,174452533187403980841,4962228907578051232358

%N Coefficients in asymptotic expansion of sequence A259870.

%H Richard J. Martin, and Michael J. Kearney, <a href="http://dx.doi.org/10.1007/s00493-014-3183-3">Integral representation of certain combinatorial recurrences</a>, Combinatorica: 35:3 (2015), 309-315.

%F a(k) ~ 2 * exp(-1) * (k-1)! / (log(2))^k.

%e A259870(n)/((n-1)!/exp(1)) ~ 1 + 2/n + 5/n^2 + 17/n^3 + 74/n^4 + 395/n^5 + ...

%t nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]

%Y Cf. A259870, A260578, A260949, A260950.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Aug 05 2015