login
A380210
Expansion of e.g.f. exp( (1+2*x)^(5/2) - 1 ).
1
1, 5, 40, 365, 3835, 44420, 559375, 7569875, 108989500, 1659791375, 26571465625, 445392932000, 7785570546625, 141513486039125, 2666916967144000, 52000124771091125, 1046623556362721875, 21712732294602537500, 463350533965622059375, 10162009318486049571875
OFFSET
0,2
COMMENTS
a(36) is negative.
FORMULA
a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * Stirling1(n,k) * Bell(k).
a(n) = (1/e) * 2^n * n! * Sum_{k>=0} binomial(5*k/2,n)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1+2*x)^(5/2)-1)))
CROSSREFS
Cf. A380209.
Sequence in context: A052788 A213104 A219560 * A349362 A359984 A271957
KEYWORD
changed,sign
AUTHOR
Seiichi Manyama, Jan 16 2025
STATUS
approved