login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A380209
Expansion of e.g.f. exp( (1+2*x)^(3/2) - 1 ).
0
1, 3, 12, 51, 243, 1188, 6399, 33561, 207468, 1013769, 9226629, 6480972, 997054353, -13211542341, 359483683932, -8602977403413, 235389825828531, -6809489816432796, 211363316786680047, -6976456643635495839, 244258757298601120476, -9039628059778792352367, 352612224537284537865477
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * Stirling1(n,k) * Bell(k).
a(n) = (1/e) * 2^n * n! * Sum_{k>=0} binomial(3*k/2,n)/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1+2*x)^(3/2)-1)))
CROSSREFS
Cf. A380210.
Sequence in context: A199875 A064036 A195255 * A241468 A224914 A227810
KEYWORD
sign,new
AUTHOR
Seiichi Manyama, Jan 16 2025
STATUS
approved