login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336087
Triangle read by rows: T(n, k) is the number of forests with n (unlabeled) nodes and k planted trees.
2
0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 4, 1, 0, 0, 0, 9, 3, 1, 0, 0, 0, 20, 6, 1, 0, 0, 0, 0, 48, 16, 3, 1, 0, 0, 0, 0, 115, 37, 7, 1, 0, 0, 0, 0, 0, 286, 96, 18, 3, 1, 0, 0, 0, 0, 0, 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0, 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0, 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0, 12486, 4235, 793, 124
OFFSET
1,7
COMMENTS
The number of planted trees with n+1 nodes is equal to the number of rooted trees with n nodes. [See Palmer-Schwenk link, pp. 115].
LINKS
FORMULA
T(1,1) = 0, if n >= 2 T(n,k) = Sum_{P_1(n,k)}( Product_{j=2..n} binomial(A000081(j-1) + c_j - 1, c_j) ), where P_1(n, k) is the set of the partitions of n with k parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0.
If k > floor(n/2), T(n,k) = 0; otherwise T(n,k) = A033185(n-k, k).
EXAMPLE
Triangle T(n,k)
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0;
2 1, 0;
3 1, 0, 0;
4 2, 1, 0, 0;
5 4, 1, 0, 0, 0;
6 9, 3, 1, 0, 0, 0;
7 20, 6, 1, 0, 0, 0, 0;
8 48, 16, 3, 1, 0, 0, 0, 0;
9 115, 37, 7, 1, 0, 0, 0, 0, 0;
10 286, 96, 18, 3, 1, 0, 0, 0, 0, 0;
11 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0;
12 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0;
13 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0;
14 12486, 4235, 793, 124, 19, 3, 1, 0, 0, 0, 0, 0, 0, 0;
15 32973, 11185, 2095, 320, 47, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0;
...
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A005199(6) = Sum_{k=1..6}( k * T(6,k) ) = 1*9 + 2*3 +3*1 = 18.
PROG
(PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1])); f[m+1] };
global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
F(n, t)={my(s=0, D, c, P_1); if(n==1, return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k])), [2, n], [t, t]); s};
CROSSREFS
Cf. A000081, A005199, A005198 (row sums), A033185.
Sequence in context: A345698 A369195 A065719 * A204387 A110509 A113953
KEYWORD
nonn,tabl
AUTHOR
Washington Bomfim, Jul 08 2020
STATUS
approved