login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336088
k such that L(H(k,2)) = 2*L(H(k,1)) where L(x) is the number of terms in the continued fraction of x and H(k,r) = Sum_{u=1..k} 1/u^r.
1
28, 61, 90, 105, 121, 321, 339, 382, 408, 466, 602, 1079, 1121, 1596, 1782, 2067, 2104, 2170, 2220, 2250, 2435, 2456, 2884, 3141, 3242, 3321, 3328, 3435, 4195, 4323, 4348, 4497, 4766, 4914, 5241, 5526, 6290, 6581, 6597, 9306, 9734
OFFSET
1,1
COMMENTS
Conjecture: this sequence is infinite. More generally for any fixed integers a,b,c,d >= 1, there are infinitely many k's such that c*d*L(H(k,a)^b) = a*b*L(H(k,c)^d) where L(x) is the number of terms in the continued fraction of x and H(k,r) = Sum_{u=1..k} 1/u^r. Here, (a,b,c,d) = (2,1,1,1).
MATHEMATICA
c[n_, r_] := Length @ ContinuedFraction @ HarmonicNumber[n, r]; Select[Range[10^4], c[#, 2] == 2 * c[#, 1] &] (* Amiram Eldar, Oct 04 2020 *)
PROG
(PARI) H1=H2=1; for(n=2, 10000, H1=H1+1/n; H2=H2+1/n^2; if(length(contfrac(H2))==2*length(contfrac(H1)), print1(n, ", ")))
CROSSREFS
Sequence in context: A132769 A329306 A329307 * A255159 A071750 A255152
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 04 2020
STATUS
approved