OFFSET
0,2
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 2*n + a(n-1) + 26, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=28, a(2)=58; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 14 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(27)/27 = A001008(27)/A102928(27) = 312536252003/2168462696400, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/27 - 57128792093/2168462696400. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 2*x*(14 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(28 + x).
a(n) = 2*A132756(n). (End)
MATHEMATICA
Table[n(n+27), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 28, 58}, 50] (* Harvey P. Dale, Oct 14 2012 *)
PROG
(PARI) a(n)=n*(n+27) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A132756.
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved