login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102928
Numerator of the harmonic mean of the first n positive integers.
27
1, 4, 18, 48, 300, 120, 980, 2240, 22680, 25200, 304920, 332640, 4684680, 5045040, 5405400, 11531520, 208288080, 73513440, 1474352880, 62078016, 108636528, 113809696, 2736605872, 8566766208, 223092870000, 232016584800
OFFSET
1,2
COMMENTS
See A175441 - denominators of the harmonic means of the first n positive integers. - Jaroslav Krizek, May 16 2010
a(n) is also the denominator of H(n-1)/n + 1/n^2 = -Integral_{x=0..1} x^n*log(1-x) with H(n) = A001008(n)/A002805(n) the harmonic number of order n. - Groux Roland, Jan 08 2011 [corrected by Gary Detlefs, Oct 06 2011]
Equivalently, a(n) is the reduced denominator of the arithmetic mean of the reciprocals of the first n positive integers (corresponding reduced numerator is A175441(n)). - Rick L. Shepherd, Jun 15 2014
n divides a(n) iff n is not from the sequence A256102. - Wolfdieter Lang, Apr 23 2015
LINKS
Eric Weisstein's World of Mathematics, Harmonic Mean
FORMULA
a(n) = denominator(EulerGamma/n + PolyGamma(0, 1 + n)/n). - Artur Jasinski, Nov 02 2008
a(n) = numerator(n/H(n)), where H(n) is the n-th harmonic number. - Gary Detlefs, Sep 10 2011
a(n) = denominator((1/n)*Sum_{k=1..n} k + 1/k). - Stefano Spezia, Jul 27 2022
a(n) = denominator(Sum_{k>0} 1/(k*(k+n))). - Mohammed Yaseen, Jun 23 2024
EXAMPLE
1, 4/3, 18/11, 48/25, 300/137, 120/49, 980/363, 2240/761, ...
Division property: The first n not dividing a(n) is 20 because 20 = A256102(1). Indeed, a(20) = 62078016. - Wolfdieter Lang, Apr 23 2015
MATHEMATICA
Table[Numerator[n/HarmonicNumber[n]], {n, 26}]
PROG
(PARI) a(n) = numerator(n/sum(k=1, n, 1/k)); \\ Michel Marcus, Jul 29 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Jan 19 2005
EXTENSIONS
Definition edited by N. J. A. Sloane, Jan 24 2024
STATUS
approved