|
|
A175441
|
|
Denominators of the harmonic means H(n) of the first n positive integers.
|
|
8
|
|
|
1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 11167027, 18858053, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387, 9304682830147
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A102928 - numerators of the harmonic means of the first n positive integers.
a(n) = A001008(n) for n = 1 - 19 and other n.
a(n) is also the numerator of H(n)/(n+1)+1/(n+1)^2 = -int(x^n*log(1-x), x=0..1) with H(n) = A001008(x)/A002805(n) harmonic number of order n. - Groux Roland, Jan 08 2011
|
|
LINKS
|
|
|
FORMULA
|
a(n) = numerator(sum(1/(k*(k+n)), k=1..oo)). - Paolo P. Lava, Jan 17 2013
a(n) = denominator(n/(Sum_{k=1..n} 1/k)). - Andrew Howroyd, Jan 08 2020
|
|
EXAMPLE
|
H(n) = 1, 4/3, 18/11, 48/25, 300/137, 120/49, 980/363, 2240/761, ...
|
|
MATHEMATICA
|
Table[Denominator[HarmonicMean[Range[n]]], {n, 30}] (* Harvey P. Dale, May 21 2021 *)
|
|
PROG
|
(PARI) a(n)={denominator(n/sum(k=1, n, 1/k))} \\ Andrew Howroyd, Jan 08 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,frac
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|