|
|
A102926
|
|
Smallest prime factor in product of previous terms +1 or -1.
|
|
2
|
|
|
2, 3, 5, 29, 11, 7, 13, 37, 17, 79, 23, 4129, 193, 2593, 101, 19, 39163, 577, 26431, 131, 308798542881428667318174028327605372989, 103, 163, 179, 293, 127, 6287, 683437, 31, 89, 13590243019242466336587034391, 113, 2207, 59, 109, 223, 2351
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A variant of the Euclid-Mullin construction.
This sequence is listed on the OEIS wiki page "OEIS sequences needing factors" and on the corresponding thread on mersenneforum.org. - M. F. Hasler, Mar 21 2013
|
|
LINKS
|
|
|
FORMULA
|
a(n) = least prime factor of b(n)^2-1, where b(n) = product a(k), 0<k<n, = A102927.
|
|
EXAMPLE
|
a(5)=11 because 2*3*5*29=870, 869=11*79, 871=13*67.
a(31) = 13590243019242466336587034391 because this is the least prime factor of A102927(30)+1. The least prime factor of A102927(30)-1 is 44989026625856465412069667987. Remarkably, both are 29-digit numbers. - David Wasserman, Apr 15 2008
|
|
MATHEMATICA
|
spf[{p_, a_}]:=With[{f=FactorInteger[p^2-1][[1, 1]]}, {p*f, f}]; NestList[ spf, {2, 2}, 36][[All, 2]] (* Harvey P. Dale, May 05 2018 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Don Reble, Jan 23 2005, corrected Sep 26 2006
|
|
STATUS
|
approved
|
|
|
|