login
A084598
a(1) = 2, a(2) = 3; for n >= 2, a(n+1) is smallest prime factor of (Product_{k = 1..n} a(k)) - 1.
4
2, 3, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107
OFFSET
1,1
COMMENTS
Like the Euclid-Mullin sequence A000945, but subtracting rather than adding 1 to the product.
The first 4 terms are identical with A084599. It starts diverging at a(5) because the factorization of 2*3*5*29 - 1 = 869 = 11*79 gives A084598(5)=11 and A084599(5)=79. - Hugo Pfoertner, Mar 31 2004
LINKS
Sean A. Irvine added terms 54 through 61, May 21 2006, giving Table of n, a(n) for n = 1..61
EXAMPLE
a(4) = 29 since 2*3*5 = 30 and 29 is the smallest prime factor of 30-1.
MATHEMATICA
a={2, 3}; q=2;
For[n=3, n<=19, n++,
q=q*Last[a];
AppendTo[a, Min[FactorInteger[q-1][[All, 1]]]];
];
a (* Robert Price, Jul 17 2015 *)
CROSSREFS
Essentially the same as A005265.
Sequence in context: A041585 A042935 A102926 * A215307 A215103 A038962
KEYWORD
nonn
AUTHOR
Marc LeBrun, May 31 2003
EXTENSIONS
More terms from Hugo Pfoertner, May 31 2003, using Dario Alpern's ECM
STATUS
approved