login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098849 a(n) = n*(n + 16). 19
0, 17, 36, 57, 80, 105, 132, 161, 192, 225, 260, 297, 336, 377, 420, 465, 512, 561, 612, 665, 720, 777, 836, 897, 960, 1025, 1092, 1161, 1232, 1305, 1380, 1457, 1536, 1617, 1700, 1785, 1872, 1961, 2052, 2145, 2240, 2337, 2436, 2537, 2640, 2745, 2852, 2961 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = (n+8)^2 - 8^2 = n*(n + 16), n>=0.

G.f.: x*(17 - 15*x)/(1-x)^3.

a(n) = a(n-1) + 2*n + 15 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010

From G. C. Greubel, Jul 29 2016: (Start)

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

E.g.f.: x*(17 + x)*exp(x). (End)

MAPLE

seq(n*(n+16), n=0..55); # (Deutsch)

a:=n->sum(n, j=17..n): seq(a(n), n=16..63); # Zerinvary Lajos, Feb 17 2008

MATHEMATICA

s=0; lst={}; Do[s+=n; AppendTo[lst, s], {n, 17, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)

LinearRecurrence[{3, -3, 1}, {0, 17, 36}, 50] (* G. C. Greubel, Jul 29 2016 *)

PROG

(PARI) a(n)=n*(n+16) \\ Charles R Greathouse IV, Jul 30 2016

CROSSREFS

Cf. A098832, A001477, A056126, A120071, A132760, A132761, A132765.

a(n-8), n>=9, eighth column (used for the n=8 series of the hydrogen atom) of triangle A120070.

Sequence in context: A041576 A116112 A190755 * A319059 A217195 A177835

Adjacent sequences:  A098846 A098847 A098848 * A098850 A098851 A098852

KEYWORD

nonn,easy

AUTHOR

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

EXTENSIONS

More terms from Emeric Deutsch, Mar 26 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 04:32 EDT 2019. Contains 321406 sequences. (Running on oeis4.)