login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098849
a(n) = n*(n + 16).
21
0, 17, 36, 57, 80, 105, 132, 161, 192, 225, 260, 297, 336, 377, 420, 465, 512, 561, 612, 665, 720, 777, 836, 897, 960, 1025, 1092, 1161, 1232, 1305, 1380, 1457, 1536, 1617, 1700, 1785, 1872, 1961, 2052, 2145, 2240, 2337, 2436, 2537, 2640, 2745, 2852, 2961
OFFSET
0,2
LINKS
FORMULA
a(n) = (n+8)^2 - 8^2 = n*(n + 16), n>=0.
G.f.: x*(17 - 15*x)/(1-x)^3.
a(n) = a(n-1) + 2*n + 15 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(17 + x)*exp(x). (End)
From Amiram Eldar, Jan 15 2021: (Start)
Sum_{n>=1} 1/a(n) = H(16)/16 = A001008(16)/A102928(16) = 2436559/11531520, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 95549/2306304. (End)
MAPLE
seq(n*(n+16), n=0..55); # Emeric Deutsch, Mar 26 2005
a:=n->sum(n, j=17..n): seq(a(n), n=16..63); # Zerinvary Lajos, Feb 17 2008
MATHEMATICA
s=0; lst={}; Do[s+=n; AppendTo[lst, s], {n, 17, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
LinearRecurrence[{3, -3, 1}, {0, 17, 36}, 50] (* G. C. Greubel, Jul 29 2016 *)
Table[n(n+16), {n, 0, 50}] (* Harvey P. Dale, Jul 18 2024 *)
PROG
(PARI) a(n)=n*(n+16) \\ Charles R Greathouse IV, Jul 30 2016
CROSSREFS
a(n-8), n>=9, eighth column (used for the n=8 series of the hydrogen atom) of triangle A120070.
Sequence in context: A041576 A116112 A190755 * A319059 A217195 A177835
KEYWORD
nonn,easy
AUTHOR
Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004
EXTENSIONS
More terms from Emeric Deutsch, Mar 26 2005
STATUS
approved