login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132760
a(n) = n*(n+15).
17
0, 16, 34, 54, 76, 100, 126, 154, 184, 216, 250, 286, 324, 364, 406, 450, 496, 544, 594, 646, 700, 756, 814, 874, 936, 1000, 1066, 1134, 1204, 1276, 1350, 1426, 1504, 1584, 1666, 1750, 1836, 1924, 2014, 2106, 2200, 2296, 2394, 2494
OFFSET
0,2
FORMULA
a(n) = n*(n + 15).
a(n) = 2*A056121(n). - Reinhard Zumkeller, Mar 20 2009
a(n) = 2*n + a(n-1) + 14 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(-8+7*x)/(x-1)^3. - R. J. Mathar, Jul 14 2012
Sum_{n>=1} 1/a(n) = 1195757/5405400 = 0.22121526621... - R. J. Mathar, Jul 14 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/15 - 52279/1081080. - Amiram Eldar, Jan 15 2021
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(16 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
s=0; lst={}; Do[s+=n; AppendTo[lst, s], {n, 16, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
Table[n(n+15), {n, 0, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 16, 34}, 60] (* Harvey P. Dale, Jan 20 2019 *)
PROG
(PARI) a(n)=n*(n+15) \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved