OFFSET
0,2
LINKS
Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = n*(n + 15).
a(n) = 2*A056121(n). - Reinhard Zumkeller, Mar 20 2009
a(n) = 2*n + a(n-1) + 14 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(-8+7*x)/(x-1)^3. - R. J. Mathar, Jul 14 2012
Sum_{n>=1} 1/a(n) = 1195757/5405400 = 0.22121526621... - R. J. Mathar, Jul 14 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/15 - 52279/1081080. - Amiram Eldar, Jan 15 2021
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(16 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
s=0; lst={}; Do[s+=n; AppendTo[lst, s], {n, 16, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
Table[n(n+15), {n, 0, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 16, 34}, 60] (* Harvey P. Dale, Jan 20 2019 *)
PROG
(PARI) a(n)=n*(n+15) \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved