login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329307
Define b(D) = -Sum_{i=1..D} Kronecker(-D,i)*i for D == 0 or 3 (mod 4); sequence gives D such that b(D) = 0 and b(D/k^2) != 0 for k > 1, given that D/k^2 is an integer == 0 or 3 (mod 4).
1
28, 60, 72, 92, 99, 100, 124, 147, 156, 180, 188, 207, 220, 275, 284, 315, 316, 348, 380, 412, 423, 444, 475, 476, 504, 507, 508, 531, 572, 600, 604, 612, 636, 639, 668, 676, 732, 747, 764, 775, 796, 847, 855, 860, 892, 924, 931, 936, 956, 963, 968, 975, 980, 988, 1020
OFFSET
1,1
COMMENTS
Note that {Kronecker(D,i)} is a Dirichlet character mod |D| if and only if D == 0, 1 (mod 4).
Primitive terms in A329306.
Numbers of the form d*p^2, where -d is a fundamental discriminant and Kronecker(-d,p) = 1 (i.e., the rational prime p decomposes in the quadratic number field with discriminant -d).
EXAMPLE
60 is a term because 60 = 2^2 * 15 and -15 is a fundamental discriminant. Indeed, -Sum_{i=1..60} Kronecker(-60,i)*i = 0 and -Sum_{i=1..15} Kronecker(-15,i)*i != 0.
Although -Sum_{i=1..252} Kronecker(-252,i)*i = 0, 252 is not a term, because 252/3^2 = 28 and -Sum_{i=1..28} Kronecker(-28,i)*i = 0
PROG
(PARI) isA329307(n) = if(n%4==0||n%4==3, my(f=factor(n)); for(i=1, omega(n), my(p=f[i, 1], e=f[i, 2], m=n/p^e); if(e==2 && isfundamental(-m) && kronecker(-m, p)==1, return(1)))); 0
CROSSREFS
Sequence in context: A042566 A132769 A329306 * A336088 A255159 A071750
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 30 2019
STATUS
approved