login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329648
Let D = A014601(n) be the n-th positive integer congruent to 0 or 3 mod 4, then a(n) = b(D) := -Sum_{i=1..D} Kronecker(-D,i)*i, where Kronecker(-D,i) is the Kronecker symbol.
3
1, 2, 7, 8, 11, 8, 30, 8, 19, 40, 69, 48, 9, 0, 93, 32, 70, 36, 156, 80, 43, 88, 235, 32, 102, 104, 220, 224, 177, 0, 126, 32, 67, 272, 497, 0, 50, 152, 395, 160, 249, 336, 522, 176, 182, 0, 760, 192, 0, 0, 515, 624, 321, 72, 888, 0, 230, 696, 1190, 480, 246, 0, 635
OFFSET
1,2
COMMENTS
Note that {Kronecker(D,i)} is a Dirichlet character mod |D| if and only if D == 0, 1 (mod 4).
We have the identity: -Sum_{i=1..D} Kronecker(-D,i)*i^2 = D*b(D). Proof: -Sum_{i=1..D} Kronecker(-D,i)*i^2 = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*i^2+Kronecker(-D,D-i)*(D-i)^2) = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*(i^2-(D-i)^2)) = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*(2*D*i-D^2) = D*b(D) + (D^2/2)*(Sum_{i=1..D} Kronecker(-D,i)) = D*b(D).
LINKS
Eric Weisstein's World of Mathematics, Class Number
Eric Weisstein's World of Mathematics, Dirichlet L-Series
FORMULA
Let c(D) = b(D)/D = -(1/D)*(Sum_{i=1..D} Kronecker(-D,i)*i). Let -d be the unique fundamental discriminant (i.e., d is in A003657) such that D/d is a square, then c(D) = 2*h(-d)/w(-d) * Product_{primes p|D} (1-Kronecker(-d,p)), where h(-d) is the class number of K = Q[sqrt(-d)], w(-d) is the number of elements in K whose norms are 1 (w(-d) = 6 if d = 3, 4 if d = 4 and 2 if d > 4). This can be seen as the generalization of the well known class number formula: if -d is a fundamental discriminant then c(d) = 2*h(-d)/w(-d). See my notes in the Links section.
b(D) = 0 if and only if there exists a prime p being a factor of D such that if we write D = p^e * s, gcd(p,s) = 1, then e is even and Kronecker(-s,p) = 1; if p = 2, then s == 7 (mod 8).
If -d is a fundamental discriminant, then Sum_{k>=1} Kronecker(-d,k)/k = 2*Pi*h(-d)/(sqrt(d)*w(-d)) = Pi*c(d)/sqrt(d) = Pi*b(d)/d^(3/2). Here Sum_{k>=1} Kronecker(-d,k)/k is the value of the Dirichlet L-series of a non-principal character modulo d at s=1.
EXAMPLE
For n = 7, D = 15, b(15) = -(1 + 2 + 4 - 7 + 8 - 11 - 13 - 14) = 30, which is equal to 15*h(-15). Note that the class number of Q[sqrt(-15)] is 2.
For D < 100, b(D) = 0 for D = 28 = 7*2^2, 60 = 15*2^2, 72 = 8*3^2, 92 = 23*2^2, 99 = 11*3^2 and 100 = 4*5^2, where -7, -15, -8, -23, -11 and -4 are fundamental discriminants. Note that Kronecker(-7,2) = Kronecker(-15,2) = Kronecker(-8,3) = Kronecker(-23,2) = Kronecker(-11,3) = 1. On the other hand, for D = 213444 = 4*231^2, we have c(213444) = 2*h(-4)/w(-4) * (1-Kronecker(-4,3))*(1-Kronecker(-4,7))*(1-Kronecker(-4,11)) = 4 and b(213444) = 213444*4 = 853776.
MATHEMATICA
b[n_] = -Sum[KroneckerSymbol[n, i]*i, {i, 1, n}];
a[n_] = b[2 n + Mod[n, 2]]
PROG
(PARI) b(n) = -sum(i=1, n, kronecker(-n, i)*i)
a(n) = b(2*n + (n%2))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 18 2019
STATUS
approved