Let χ be a real Dirichlet character modulo N, we are interested in the value of

$$
S(\chi) := -\frac{1}{N} \sum_{i=1}^N i\chi(i).
$$

If χ is an even character (i.e., $\chi(-1) = 1$) and $N > 1$, then

$$
\sum_{i=1}^{N} i\chi(i) = \frac{1}{2} \left(\sum_{i=1}^{N} i\chi(i) + \sum_{i=0}^{N-1} i\chi(i) \right) = \frac{1}{2} \sum_{i=1}^{N} (i\chi(i) + (N-i)\chi(N-i))
$$

= $\frac{1}{2} \sum_{i=1}^{N} N\chi(i),$

$$
S(\chi) = -\frac{1}{2} \sum_{i=1}^{N} \chi(i) = \begin{cases} -\frac{\varphi(N)}{2}, & \text{if } N \text{ is a principal character} \\ 0, & \text{otherwise} \end{cases}
$$

So we'll suppose that χ is an odd character (i.e., $\chi(-1) = -1$).

Lemma 1. If χ_n is any Dirichlet character whose period is *n*, then for any *k*,

$$
S(\chi) = -\frac{1}{kn} \sum_{i=1}^{kn} i\chi_n(i).
$$

Proof.

$$
\sum_{i=1}^{kn} i\chi_n(i) = \sum_{j=0}^{k-1} \sum_{i=1}^n (i+jn)\chi_n(i) = k \sum_{i=1}^n i\chi_n(i) + n \left(\sum_{j=0}^{k-1} j\right) \left(\sum_{i=1}^n \chi_n(i)\right)
$$

$$
= k \sum_{i=1}^n i\chi_n(i).
$$

This result means that $S(\chi)$ is not affected by the upper bound of the summation index as long as it is divisible by the period of χ .

Lemma 2. Suppose χ_n to be any Dirichlet character whose period is n, χ_p be the principal Dirichlet character modulo p , where p is any prime coprime to n , then

$$
S(\chi_n\chi_p)=(1-\chi_n(p))S(\chi_n).
$$

Proof.

$$
\sum_{i=1}^{np} i\chi_n(i)\chi_p(i) = \sum_{i=1}^{np} i\chi_n(i) - \sum_{j=1}^{n} jp\chi_n(jp)
$$

= $p \sum_{i=1}^{n} i\chi_n(i) - p\chi_n(p) \sum_{j=1}^{n} j\chi_n(j)$ (By Lemma 1)
= $p(1 - \chi_n(p)) \sum_{i=1}^{n} i\chi_n(i)$.

Lemma 3. Let χ be a character, then there exists a unique way to decompose χ into $\chi = \chi_0 \chi_d$ and a pair of numbers (k, d) , where χ_0 is a principal character modulo k, χ_d is a primitive character modulo d, k is squarefree, and $gcd(k, d)$ = 1.

Proof. Let χ be a character modulo N, then χ can be uniquely decomposed into $\chi = \chi_{N1}\chi_{N2} \dots \chi_{Nl}$, where χ_{Ni} is a character modulo $p_i^{\alpha_i}, p_1^{\alpha_1}p_2^{\alpha_2} \dots p_l^{\alpha_l} = N$. Let

$$
\chi_0 = \prod_{\chi_{Ni} \text{ is principal}} \chi_{Ni} \text{ , } \chi_d = \prod_{\chi_{Ni} \text{ is non-principal}} \chi_{Ni}.
$$

Then $k = \prod_{\chi_{Ni}}$ is principal p_i . When χ_{Ni} is a non-principal character modulo $p_i^{\alpha_i}$,

it is primitive modulo its own period, so χ_d is a primitive character modulo its period d. Obviously k is squarefree, and $gcd(k, d) = 1$.

If we have another pair (χ'_0, χ'_d) such that $\chi = \chi'_0 \chi'_d$, χ'_0 is a principal character modulo k' , χ_d' is a primitive character modulo d', k' is squarefree, and $gcd(k', d') = 1$, write

$$
\chi_0 = \chi_{01}\chi_{02} \dots \chi_{0r}, \chi_d = \chi_{d1}\chi_{d2} \dots \chi_{dt};
$$

$$
\chi'_0 = \chi'_{01}\chi'_{02} \dots \chi'_{0r'}, \chi'_d = \chi'_{d1}\chi'_{d2} \dots \chi'_{dt'},
$$

where $\{\chi_{0i}\}, \{\chi'_{0i}\}\$ are principal characters modulo prime powers, $\{\chi_{dj}\}, \{\chi'_{dj}\}\$ are non-principal characters modulo prime powers, by the unique decomposition of χ into characters modulo prime powers, we have

$$
\{\chi_{01}, \chi_{02}, \dots, \chi_{0r}, \chi_{d1}, \chi_{d2}, \dots, \chi_{dt}\} = \{\chi'_{01}, \chi'_{02}, \dots, \chi'_{0r'}, \chi'_{d1}, \chi'_{d2}, \dots, \chi'_{dt'}\},
$$

$$
\{\chi_{01}, \chi_{02}, \dots, \chi_{0r}\} = \{\chi'_{01}, \chi'_{02}, \dots, \chi'_{0r'}\}, \{\chi_{d1}, \chi_{d2}, \dots, \chi_{dt}\} = \{\chi'_{d1}, \chi'_{d2}, \dots, \chi'_{dt'}\}.
$$

This gives $\chi'_{0} = \chi_{0}$ and $\chi'_{d} = \chi_{d}$, so $k' = k$ and $d' = d$.

Theorem. Let χ be an odd real Dirichlet character modulo *N*. Decompose χ into $\chi = \chi_0 \chi_d$, where χ_0 is a principal character modulo k, χ_d is a primitive character modulo *d*, *k* is squarefree, and $gcd(k, d) = 1$, then $-d$ is the fundamental discriminant of an imaginary quadratic number field, and

$$
S(\chi) = \frac{2h(-d)}{w(-d)} \prod_{p|N, p \text{ prime}} \left(1 - \left(\frac{-d}{p}\right)\right),
$$

where $h(-d)$ is the class number of $K = \mathbb{Q}[\sqrt{-d}]$, and $w(-d)$ is the number of elements in K whose norms are 1, given by

$$
w(-d) = \begin{cases} 6, d = 3\\ 4, d = 4, \\ 2, d > 4 \end{cases}
$$

and $\left(\frac{-d}{dx}\right)$ $\left(\frac{a}{i}\right)$ is the Kronecker symbol.

Example. Let $N = 21$,

 $\chi = \{1,1,0,1,-1,0,0,1,0,-1,1,0,-1,0,0,1,-1,0,-1,-1,0\}.$

Then $\chi_0 = \{1,1,0\}$ is principal, $\chi_7 = \{1,1,-1,1,-1,-1,0\}$ is a primitive character modulo 7, and

$$
S(\chi) = 2 = \frac{2h(-7)}{w(-7)} \left(1 - \left(\frac{-7}{3} \right) \right) \left(1 - \left(\frac{-7}{7} \right) \right).
$$

Proof. Write

 $\chi_0 = \chi_{01}\chi_{02} ... \chi_{0r}$, $S(\chi) = S(\chi_{0}\chi_{d}) = S(\chi_{d}\chi_{01}\chi_{02} ... \chi_{0r})$, where $\{\chi_{0i}\}\$ is the principal character modulo $p_i, p_1p_2...p_r = k$.

By Lemma 2,

$$
S(\chi) = S(\chi_d) \prod_{i=1}^r \bigl(1 - \chi_d(p_i)\bigr).
$$

Note that if $q|N$ but $q \neq p_i$, then $q|d$, $\chi_d(q) = 0$. So this formula can be simplified to

$$
S(\chi) = S(\chi_d) \prod_{p|N, p \text{ prime}} (1 - \chi_d(p)).
$$

There is a primitive character modulo d means either one of the following two statements holds:

(a) d is the fundamental discriminant of a real quadratic number field, and

$$
\chi_d(i) = \left(\frac{d}{i}\right);
$$

(b) $-d$ is the fundamental discriminant of an imaginary quadratic number field, and

$$
\chi_d(i) = \left(\frac{-d}{i}\right).
$$

Since χ is an odd character, we have $\chi_d(-1) = -1$, so we know statement (b) is true. Then we have the well-known class number formula:

$$
S(\chi_d) = \frac{2h(-d)}{w(-d)},
$$

So now we have

$$
S(\chi) = \frac{2h(-d)}{w(-d)} \prod_{p|N, p \text{ prime}} \left(1 - \left(\frac{-d}{p}\right)\right),
$$

which is the desired result.

Specially, let $\chi = \left(\frac{-b}{\lambda}\right)$ $\left(\frac{b}{i}\right)$ be a real Dirichlet character modulo D for some $D \equiv$

0,3 (mod 4), then d is the unique number such that $-d$ is the unique fundamental discriminant and D/d is a square. This gives

$$
-\frac{1}{D}\sum_{i=1}^{D} i\left(\frac{-D}{i}\right) = S(\chi) = \frac{2h(-d)}{w(-d)} \prod_{p|D,p \text{ prime}} \left(1 - \left(\frac{-d}{p}\right)\right).
$$