login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let D = A014601(n) be the n-th positive integer congruent to 0 or 3 mod 4, then a(n) = b(D) := -Sum_{i=1..D} Kronecker(-D,i)*i, where Kronecker(-D,i) is the Kronecker symbol.
3

%I #35 Nov 30 2019 09:00:58

%S 1,2,7,8,11,8,30,8,19,40,69,48,9,0,93,32,70,36,156,80,43,88,235,32,

%T 102,104,220,224,177,0,126,32,67,272,497,0,50,152,395,160,249,336,522,

%U 176,182,0,760,192,0,0,515,624,321,72,888,0,230,696,1190,480,246,0,635

%N Let D = A014601(n) be the n-th positive integer congruent to 0 or 3 mod 4, then a(n) = b(D) := -Sum_{i=1..D} Kronecker(-D,i)*i, where Kronecker(-D,i) is the Kronecker symbol.

%C Note that {Kronecker(D,i)} is a Dirichlet character mod |D| if and only if D == 0, 1 (mod 4).

%C We have the identity: -Sum_{i=1..D} Kronecker(-D,i)*i^2 = D*b(D). Proof: -Sum_{i=1..D} Kronecker(-D,i)*i^2 = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*i^2+Kronecker(-D,D-i)*(D-i)^2) = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*(i^2-(D-i)^2)) = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*(2*D*i-D^2) = D*b(D) + (D^2/2)*(Sum_{i=1..D} Kronecker(-D,i)) = D*b(D).

%H Jianing Song, <a href="/A329648/b329648.txt">Table of n, a(n) for n = 1..10000</a>

%H Jianing Song, <a href="/A329648/a329648_2.pdf">Notes on the value of -(1/D)*(Sum_{i=1..D} Kronecker(-D,i)*i)</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletL-Series.html">Dirichlet L-Series</a>

%F Let c(D) = b(D)/D = -(1/D)*(Sum_{i=1..D} Kronecker(-D,i)*i). Let -d be the unique fundamental discriminant (i.e., d is in A003657) such that D/d is a square, then c(D) = 2*h(-d)/w(-d) * Product_{primes p|D} (1-Kronecker(-d,p)), where h(-d) is the class number of K = Q[sqrt(-d)], w(-d) is the number of elements in K whose norms are 1 (w(-d) = 6 if d = 3, 4 if d = 4 and 2 if d > 4). This can be seen as the generalization of the well known class number formula: if -d is a fundamental discriminant then c(d) = 2*h(-d)/w(-d). See my notes in the Links section.

%F b(D) = 0 if and only if there exists a prime p being a factor of D such that if we write D = p^e * s, gcd(p,s) = 1, then e is even and Kronecker(-s,p) = 1; if p = 2, then s == 7 (mod 8).

%F If -d is a fundamental discriminant, then Sum_{k>=1} Kronecker(-d,k)/k = 2*Pi*h(-d)/(sqrt(d)*w(-d)) = Pi*c(d)/sqrt(d) = Pi*b(d)/d^(3/2). Here Sum_{k>=1} Kronecker(-d,k)/k is the value of the Dirichlet L-series of a non-principal character modulo d at s=1.

%e For n = 7, D = 15, b(15) = -(1 + 2 + 4 - 7 + 8 - 11 - 13 - 14) = 30, which is equal to 15*h(-15). Note that the class number of Q[sqrt(-15)] is 2.

%e For D < 100, b(D) = 0 for D = 28 = 7*2^2, 60 = 15*2^2, 72 = 8*3^2, 92 = 23*2^2, 99 = 11*3^2 and 100 = 4*5^2, where -7, -15, -8, -23, -11 and -4 are fundamental discriminants. Note that Kronecker(-7,2) = Kronecker(-15,2) = Kronecker(-8,3) = Kronecker(-23,2) = Kronecker(-11,3) = 1. On the other hand, for D = 213444 = 4*231^2, we have c(213444) = 2*h(-4)/w(-4) * (1-Kronecker(-4,3))*(1-Kronecker(-4,7))*(1-Kronecker(-4,11)) = 4 and b(213444) = 213444*4 = 853776.

%t b[n_] = -Sum[KroneckerSymbol[n, i]*i, {i, 1, n}];

%t a[n_] = b[2 n + Mod[n, 2]]

%o (PARI) b(n) = -sum(i=1, n, kronecker(-n,i)*i)

%o a(n) = b(2*n + (n%2))

%Y Cf. A014601, A003657, A001221.

%K nonn

%O 1,2

%A _Jianing Song_, Nov 18 2019