OFFSET
0,5
COMMENTS
Rows sums are the Jacobsthal numbers A001045(n+1).
Antidiagonal sums are the Padovan-Jacobsthal numbers A052947.
Inverse is (1,xc(-2x)), c(x) the g.f. of A000108, with general term k*C(2n-k-1,n-k)(-2)^(n - k)/n.
Triangle read by rows given by (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2013
LINKS
D. Merlini, R. Sprugnoli, M. C. Verri, Strip tiling and regular grammars, Theor. Comp. Sci 242 (1-2) (2000) 109-124, Table 1, p=2.
FORMULA
G.f.: 1/(1-xy(1+2x)).
Riordan array (1, x(1+2x)).
T(n,k) = 2^(n-k)*binomial(k, n-k).
T(n,k) = A026729(n,k)*2^(n-k). - Philippe Deléham, Nov 22 2006
T(n,k) = T(n-1,k-1) + 2*T(n-2,k-1), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 01 2013
EXAMPLE
Rows begin
1;
0, 1;
0, 2, 1;
0, 0, 4, 1;
0, 0, 4, 6, 1;
0, 0, 0, 12, 8, 1;
0, 0, 0, 8, 24, 10, 1;
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Nov 09 2005
STATUS
approved