The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113951 Largest number whose n-th power is exclusionary (or 0 if no such number exists). 4
 639172, 7658, 2673, 0, 92, 93, 712, 0, 18, 12, 4, 0, 37, 0, 9, 0, 0, 3, 4, 0, 7, 2, 7, 0, 8, 3, 9, 0, 0, 0, 0, 0, 3, 2, 2, 0, 0, 7, 3, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The number m with no repeated digits has an exclusionary n-th power m^n if the latter is made up of digits not appearing in m. For the corresponding m^n see A113952. In principle, no exclusionary n-th power exists for n == 1 (mod 4) = A016813. After a(84) = 3, the next nonzero term is a(168) = 2, where 168 is the last known term in A034293. - Michael S. Branicky, Aug 28 2021 REFERENCES H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9 Journal of Recreational Mathematics, Vol. 32 No.4 2003-4, Baywood NY. LINKS Michael S. Branicky, Table of n, a(n) for n = 2..225 EXAMPLE a(4) = 2673 because no number with distinct digits beyond 2673 has a 4th power that shares no digit in common with it (see A111116). Here we have 2673^4 = 51050010415041. PROG (Python) from itertools import combinations, permutations def no_repeated_digits():     for d in range(1, 11):         for p in permutations("0123456789", d):             if p[0] == '0': continue             yield int("".join(p)) def a(n):     m = 0     for k in no_repeated_digits():         if set(str(k)) & set(str(k**n)) == set():             m = max(m, k)     return m for n in range(2, 4): print(a(n), end=", ") # Michael S. Branicky, Aug 28 2021 CROSSREFS Cf. A109135, A112736, A112994, A113318, A034293. Sequence in context: A250674 A210142 A183745 * A257194 A257187 A254987 Adjacent sequences:  A113948 A113949 A113950 * A113952 A113953 A113954 KEYWORD nonn,base AUTHOR Lekraj Beedassy, Nov 09 2005 EXTENSIONS a(34), a(39), a(40) corrected by and a(43) and beyond from Michael S. Branicky, Aug 28 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 22:46 EDT 2021. Contains 347651 sequences. (Running on oeis4.)