login
A339428
Triangle read by rows: T(n,k) is the number of connected functions on n points with a loop of length k.
15
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 9, 4, 1, 1, 48, 37, 23, 11, 4, 1, 1, 115, 96, 62, 35, 14, 5, 1, 1, 286, 239, 169, 97, 46, 18, 5, 1, 1, 719, 622, 451, 282, 145, 63, 21, 6, 1, 1, 1842, 1607, 1217, 792, 440, 206, 80, 25, 6, 1, 1
OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
G.f. of k-th column: (1/k)*Sum_{d|k} phi(d) * r(x^d)^(k/d) where r(x) is the g.f. of A000081.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 6, 3, 1, 1;
20, 16, 9, 4, 1, 1;
48, 37, 23, 11, 4, 1, 1;
115, 96, 62, 35, 14, 5, 1, 1;
286, 239, 169, 97, 46, 18, 5, 1, 1;
719, 622, 451, 282, 145, 63, 21, 6, 1, 1;
...
PROG
(PARI) \\ TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n, k)={my(r=TreeGf(max(0, n+1-k))); Vec(sumdiv(k, d, eulerphi(d)*subst(r + O(x*x^(n\d)), x, x^d)^(k/d))/k, -n)}
M(n, m=n)=Mat(vector(m, k, ColSeq(n, k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 03 2020
STATUS
approved