OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
G.f. of k-th column: (1/k)*Sum_{d|k} phi(d) * r(x^d)^(k/d) where r(x) is the g.f. of A000081.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 6, 3, 1, 1;
20, 16, 9, 4, 1, 1;
48, 37, 23, 11, 4, 1, 1;
115, 96, 62, 35, 14, 5, 1, 1;
286, 239, 169, 97, 46, 18, 5, 1, 1;
719, 622, 451, 282, 145, 63, 21, 6, 1, 1;
...
PROG
(PARI) \\ TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n, k)={my(r=TreeGf(max(0, n+1-k))); Vec(sumdiv(k, d, eulerphi(d)*subst(r + O(x*x^(n\d)), x, x^d)^(k/d))/k, -n)}
M(n, m=n)=Mat(vector(m, k, ColSeq(n, k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 03 2020
STATUS
approved