login
A027850
a(n) = (n+1)*(14*n^3+13*n^2+6*n+1).
1
1, 68, 531, 2056, 5645, 12636, 24703, 43856, 72441, 113140, 168971, 243288, 339781, 462476, 615735, 804256, 1033073, 1307556, 1633411, 2016680, 2463741, 2981308, 3576431, 4256496, 5029225, 5902676
OFFSET
0,2
FORMULA
From Harvey P. Dale, May 21 2012: (Start)
a(n) = 5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5).
G.f.: (-71*x^3-201*x^2-63*x-1)/(x-1)^5. (End)
MATHEMATICA
(* From Harvey P. Dale, May 21 2012: (Start) *)
Table[(n+1) (14 n^3+13 n^2+6 n+1), {n, 0, 30}]
LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 68, 531, 2056, 5645}, 30] (* End *)
PROG
(PARI) a(n)=(n+1)*(14*n^3+13*n^2+6*n+1) \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Sequence in context: A281770 A032510 A211691 * A372401 A248467 A281565
KEYWORD
nonn,easy
AUTHOR
STATUS
approved