login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372401
Position of 210^n among 7-smooth numbers A002473.
4
1, 68, 547, 2119, 5817, 13008, 25412, 45078, 74409, 116147, 173379, 249532, 348375, 474018, 630922, 823885, 1058051, 1338898, 1672260, 2064302, 2521535, 3050825, 3659361, 4354687, 5144682, 6037582, 7041946, 8166692, 9421074, 10814695, 12357491, 14059744, 15932086, 17985473
OFFSET
0,2
COMMENTS
Also position of 210^(n+1) in A147571.
FORMULA
a(n) ~ c * n^4, where c = log(210)^4/(24*log(2)*log(3)*log(5)*log(7)) = 14.282278766622... - Vaclav Kotesovec and Amiram Eldar, Sep 22 2024
MATHEMATICA
Table[
Sum[Floor@ Log[7, 210^n/(2^i*3^j*5^k)] + 1,
{i, 0, Log[2, 210^n]},
{j, 0, Log[3, 210^n/2^i]},
{k, 0, Log[5, 210^n/(2^i*3^j)]}],
{n, 0, 12}]
PROG
(Python)
import heapq
from itertools import islice
from sympy import primerange
def A372401gen(p=7): # generator for p-smooth terms
v, oldv, psmooth_primes, = 1, 0, list(primerange(1, p+1))
h = [(1, [0]*len(psmooth_primes))]
idx = {psmooth_primes[i]:i for i in range(len(psmooth_primes))}
loc = 0
while True:
v, e = heapq.heappop(h)
if v != oldv:
loc += 1
if len(set(e)) == 1:
yield loc
oldv = v
for p in psmooth_primes:
vp, ep = v*p, e[:]
ep[idx[p]] += 1
heapq.heappush(h, (v*p, ep))
print(list(islice(A372401gen(), 15))) # Michael S. Branicky, Jun 05 2024
(Python)
from sympy import integer_log
def A372401(n):
c, x = 0, 210**n
for i in range(integer_log(x, 7)[0]+1):
for j in range(integer_log(m:=x//7**i, 5)[0]+1):
for k in range(integer_log(r:=m//5**j, 3)[0]+1):
c += (r//3**k).bit_length()
return c # Chai Wah Wu, Sep 16 2024
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jun 03 2024
STATUS
approved