login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372400
Position of 30^n among 5-smooth numbers A051037.
3
1, 18, 83, 228, 486, 888, 1466, 2255, 3283, 4583, 6189, 8134, 10445, 13158, 16305, 19916, 24027, 28667, 33870, 39665, 46086, 53166, 60937, 69429, 78675, 88709, 99561, 111263, 123849, 137347, 151793, 167219, 183658, 201139, 219695, 239359, 260165, 282141, 305320
OFFSET
0,2
COMMENTS
Also position of 30^(n+1) in A143207.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = k*n^3 + (3k/2)*n^2 + O(n) where k = (log 30)^3/(6 log 2 log 3 log 5) = 5.35057081984.... - Charles R Greathouse IV, Sep 19 2024
MATHEMATICA
Table[Sum[Floor@ Log[5, 30^n/(2^i*3^j)] + 1, {i, 0, Log[2, 30^n]}, {j, 0, Log[3, 30^n/2^i]}], {n, 0, 38}]
PROG
(Python) # uses imports/function in A372401
print(list(islice(A372401gen(p=5), 40))) # Michael S. Branicky, Jun 05 2024
(Python)
from sympy import integer_log
def A372400(n):
c, x = 0, 30**n
for i in range(integer_log(x, 5)[0]+1):
for j in range(integer_log(y:=x//5**i, 3)[0]+1):
c += (y//3**j).bit_length()
return c # Chai Wah Wu, Sep 16 2024
(PARI) a(n)=my(t=30^n, u=5*t); sum(a=0, logint(t, 5), u\=5; sum(b=0, logint(u, 3), logint(u\3^b, 2)+1)) \\ Charles R Greathouse IV, Sep 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jun 03 2024
STATUS
approved