login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202821
Position of 6^n among 3-smooth numbers A003586.
5
1, 5, 14, 26, 43, 64, 89, 119, 153, 191, 233, 279, 330, 385, 444, 507, 575, 646, 722, 802, 886, 975, 1067, 1164, 1266, 1371, 1481, 1595, 1713, 1835, 1961, 2092, 2227, 2366, 2509, 2657, 2809, 2965, 3125, 3289, 3458, 3630, 3807, 3989, 4174, 4364, 4558, 4756
OFFSET
0,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Zak Seidov)
FORMULA
A003586(a(n)) = 6^n, for n >= 0.
a(n) ~ (log(6))^2/(log(3)*log(4))*n^2 = 2.1079...*n^2.
EXAMPLE
a(0) = 1 because A003586(1) = 6^0 = 1.
a(1) = 5 because A003586(5) = 6^1 = 6.
a(2) = 14 because A003586(14) = 6^2 = 36.
MATHEMATICA
a[n_] := Sum[Floor[Log[3, 6^n/2^i]] + 1, {i, 0, Log2[6^n]}]; Array[a, 50, 0] (* Amiram Eldar, Jul 15 2023 *)
PROG
(Python) # uses imports/function in A372401
print(list(islice(A372401gen(p=3), 1000))) # Michael S. Branicky, Jun 06 2024
(Python)
from sympy import integer_log
def A202821(n): return 1+n*(n+1)+sum((m:=3**i).bit_length()+((1<<n)//m).bit_length() for i in range(1, integer_log(1<<n, 3)[0]+1))+sum((3**i).bit_length() for i in range(integer_log(1<<n, 3)[0]+1, n+1)) # Chai Wah Wu, Oct 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 25 2011
STATUS
approved