login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202822
Numbers of the form 3*(x^2 + xy + y^2 + x + y) + 1 where x and y are integers.
10
1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 43, 49, 52, 61, 64, 67, 73, 76, 79, 91, 97, 100, 103, 109, 112, 121, 124, 127, 133, 139, 148, 151, 157, 163, 169, 172, 175, 181, 193, 196, 199, 208, 211, 217, 223, 229, 241, 244, 247, 256, 259, 268, 271, 277, 283, 289, 292
OFFSET
1,2
COMMENTS
Closed under multiplication.
Löschian numbers of the form 3*k+1. - Altug Alkan, Nov 18 2015
LINKS
Joerg Arndt, Plane-filling curves on all uniform grids, arXiv preprint arXiv:1607.02433 [math.CO], 2016.
FORMULA
A033685(n) != 0 if and only if n is in the set.
MATHEMATICA
nf[{i_, j_}]:=3(i^2+i*j+j^2+i+j)+1; Union[nf/@Tuples[Range[-10, 10], 2]] (* Harvey P. Dale, Dec 31 2011 *)
PROG
(PARI) isA(n) = if(n%3 == 0, 0, 0 != sumdiv( n, d, kronecker( -3, d)))
(PARI) x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1(n, ", "))) \\ Altug Alkan, Nov 18 2015
(PARI) is(n)=(n%3==1) && #bnfisintnorm(bnfinit(z^2+z+1), n); \\ Joerg Arndt, Jan 04 2016
(PARI) list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if((x-y)%3, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017
(Haskell)
a202822 n = a202822_list !! (n-1)
a202822_list = filter ((== 1) . flip mod 3) a003136_list
-- Reinhard Zumkeller, Nov 16 2015
CROSSREFS
Subsequence of A003136, A260682 (subsequence).
Sequence in context: A230745 A191201 A084089 * A374135 A137827 A045090
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 25 2011
STATUS
approved