Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Aug 18 2017 09:41:43
%S 1,4,7,13,16,19,25,28,31,37,43,49,52,61,64,67,73,76,79,91,97,100,103,
%T 109,112,121,124,127,133,139,148,151,157,163,169,172,175,181,193,196,
%U 199,208,211,217,223,229,241,244,247,256,259,268,271,277,283,289,292
%N Numbers of the form 3*(x^2 + xy + y^2 + x + y) + 1 where x and y are integers.
%C Closed under multiplication.
%C Löschian numbers of the form 3*k+1. - _Altug Alkan_, Nov 18 2015
%H Reinhard Zumkeller, <a href="/A202822/b202822.txt">Table of n, a(n) for n = 1..10000</a>
%H Joerg Arndt, <a href="https://arxiv.org/abs/1607.02433">Plane-filling curves on all uniform grids</a>, arXiv preprint arXiv:1607.02433 [math.CO], 2016.
%F A033685(n) != 0 if and only if n is in the set.
%t nf[{i_,j_}]:=3(i^2+i*j+j^2+i+j)+1; Union[nf/@Tuples[Range[-10,10],2]] (* _Harvey P. Dale_, Dec 31 2011 *)
%o (PARI) isA(n) = if(n%3 == 0, 0, 0 != sumdiv( n, d, kronecker( -3, d)))
%o (PARI) x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1(n, ", "))) \\ _Altug Alkan_, Nov 18 2015
%o (PARI) is(n)=(n%3==1) && #bnfisintnorm(bnfinit(z^2+z+1), n); \\ _Joerg Arndt_, Jan 04 2016
%o (PARI) list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if((x-y)%3, listput(v, t)); y++)); Set(v) \\ _Charles R Greathouse IV_, Jul 05 2017
%o (Haskell)
%o a202822 n = a202822_list !! (n-1)
%o a202822_list = filter ((== 1) . flip mod 3) a003136_list
%o -- _Reinhard Zumkeller_, Nov 16 2015
%Y Cf. A033685, A045833.
%Y Subsequence of A003136, A260682 (subsequence).
%K nonn
%O 1,2
%A _Michael Somos_, Dec 25 2011