login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375726
a(n) = a(n-1) + 3*a(n-2) + a(n-3) with a(0) = 1, a(1) = 3, a(2) = 6.
2
1, 3, 6, 16, 37, 91, 218, 528, 1273, 3075, 7422, 17920, 43261, 104443, 252146, 608736, 1469617, 3547971, 8565558, 20679088, 49923733, 120526555, 290976842, 702480240, 1695937321, 4094354883, 9884647086, 23863649056, 57611945197, 139087539451, 335787024098
OFFSET
0,2
COMMENTS
a(n) is the number of subsets T of A = {1, 2, ..., 2*n} such that no pair of elements a, b of T satisfy |a-b| = 1 or n.
FORMULA
a(n) = (1/4)*((3 + sqrt(2))*(1+sqrt(2))^n + (3 - sqrt(2))*(1-sqrt(2))^n-2*(-1)^n).
For n >= 2, a(n) = 2*a(n-1) + a(n-2) - (-1)^n.
From Stefano Spezia, Aug 26 2024: (Start)
G.f.: (1 + 2*x)/((1 + x)*(1 - 2*x - x^2)).
E.g.f.: (sinh(x) - cosh(x) + exp(x)*(3*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)))/2. (End)
Let f = (3 - sqrt(2))*exp((1 - sqrt(2))*x) + (3 + sqrt(2))*exp((1 + sqrt(2))*x), then 4*a(n) + 2*(-1)^n = n! * [x^n] f. - Peter Luschny, Sep 10 2024
a(n)+a(n-1) = A048654(n). - R. J. Mathar, Sep 27 2024
EXAMPLE
For n = 2, the a(2) = 6 subsets of {1, 2, 3, 4} are {}, {1}, {2}, {3}, {4}, {1, 4}.
MATHEMATICA
LinearRecurrence[{1, 3, 1}, {1, 3, 6}, 31] (* Hugo Pfoertner, Aug 26 2024 *)
PROG
(PARI) my(a=1, b=3, c=6); for(n=1, 31, print1(a, ", "); my(d=a+3*b+c); a=b; b=c; c=d)
CROSSREFS
Cf. A001333 (b), A000129 (c), A097076 (d).
Sequence in context: A293993 A072824 A360229 * A369432 A089406 A027852
KEYWORD
nonn,easy
AUTHOR
Yifan Xie, Aug 25 2024
STATUS
approved