login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027855 Antimutinous numbers: n>1 such that n/p^k < p, where p is the largest prime dividing n and p^k is the highest power of p dividing n. 4
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers which can be expressed as m*p^k, for p prime and m < p and k > 0. List contains n if A006530(n) > A051119(n). - Harry Richman, Aug 19 2019

LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000

MAPLE

A006530 := proc(n) local ifs ; if n = 1 then 1; else ifs := ifactors(n)[2] ; max(seq( op(1, k), k=ifs)) ; fi ; end: isA027855 := proc(n) local p, k, pk; if n <= 1 then false; else p := A006530(n) ; pk := p ; while n mod ( pk*p) = 0 do pk := pk*p ; od: if n< p*pk then true ; else false ; fi ; fi ; end: for n from 2 to 120 do if isA027855(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Dec 02 2007

MATHEMATICA

Select[Range@100, #1^(#2 + 1) & @@ FactorInteger[#][[-1]] > # &] (* Ivan Neretin, Jul 09 2015 *)

PROG

(Python)

from sympy import factorint, primefactors

def a053585(n):

if n==1: return 1

p = primefactors(n)[-1]

return p**factorint(n)[p]

print([n for n in range(2, 301) if n//a053585(n)<primefactors(n)[-1]]) # Indranil Ghosh, Jul 13 2017

(PARI) is(n) = my(f = factor(n)); c = n\f[#f~, 1]^f[#f~, 2]; c < f[#f~, 1] \\ David A. Corneth, Aug 19 2019

CROSSREFS

Cf. A006530, A027854, A051119.

Sequence in context: A325778 A299702 A348577 * A031996 A023753 A035332

Adjacent sequences: A027852 A027853 A027854 * A027856 A027857 A027858

KEYWORD

nonn

AUTHOR

Leroy Quet

EXTENSIONS

More terms from R. J. Mathar, Dec 02 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 18:55 EDT 2023. Contains 361575 sequences. (Running on oeis4.)