login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027854
Mutinous numbers: n > 1 such that n/p^k > p, where p is the largest prime dividing n and p^k is the highest power of p dividing n.
8
12, 24, 30, 36, 40, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 96, 105, 108, 112, 120, 126, 132, 135, 140, 144, 150, 154, 160, 165, 168, 175, 176, 180, 182, 189, 192, 195, 198, 200, 208, 210, 216, 220, 224, 225, 231, 234, 240, 252, 260, 264, 270, 273, 275, 280
OFFSET
1,1
COMMENTS
Numbers n > 1 such that n/A053585(n) > A006530(n). - Michael De Vlieger, Jul 13 2017
If p = A006530(a(n)) then p * a(n) is in the sequence. E.g., as 12 is in the sequence with gpf(12) = A006530(12) = 3, 12*3^k is in the sequence for k > 0. Conjecture: if m is in the sequence then so is A003961(m). - David A. Corneth, Jul 13 2017
At present this and A027855 are complements in the set of integers >= 2. If a 1 were inserted at the start, then this and A027855 are complements in the set of positive integers. - Harry Richman, Sep 08 2019
The sequence is closed under multiplication (a semigroup). For, suppose x = p^i*m1, y = q^j*m2 are in the sequence, with p, q, p^i, p^j as given, with m1 > p and m2 > q, and suppose q >= p. If q = p then xy/q^(i+j) = m1*m2 > q. If q > p, then xy/q^j = p^i*m1*m2 > q (since q > p and p is greater than all primes in m1). - Richard Peterson, May 29 2022
There are subsequences that constitute subsemigroups: Consider as a subsequence all terms x such that x/p^k > a*p^b, with p,k as specified in the definition and a,b fixed real numbers greater than or equal to 1. Each pair (a,b) determines a subsequence that is also a subsemigroup of the original (1,1) semigroup that constitutes the whole sequence. The proof of closure is similar. To see that such proposed subsemigroups are nonempty, choose any prime p greater than 2 and multiply p by a sufficiently large power of 2. - Richard Peterson, May 29 2022
This sequence is a subsequence and subsemigroup of A289484. - Richard Peterson, Oct 29 2022
LINKS
EXAMPLE
From Michael De Vlieger, Jul 13 2017: (Start)
12 is a term since 12/A053585(12) = 12/3 = 4, A006530(12) = 3, and 4 > 3.
30 is a term since 30/A053585(30) = 30/5 = 6, A006530(30) = 5, and 6 > 5.
(End)
MATHEMATICA
Select[Range@ 280, Function[n, (n/Apply[Power, Last@ #]) > #[[-1, 1]] &@ FactorInteger[n]]] (* Michael De Vlieger, Jul 13 2017 *)
PROG
(PARI) isok(n) = {my(f = factor(n)); my(maxf = #f~); my(p = f[maxf, 1]); my(pk = f[maxf, 2]); (n/p^pk) > p; } \\ Michel Marcus, Jan 16 2014
(Python)
from sympy import factorint, primefactors
def a053585(n):
if n==1: return 1
p = primefactors(n)[-1]
return p**factorint(n)[p]
print([n for n in range(2, 301) if n>a053585(n)*primefactors(n)[-1]]) # Indranil Ghosh, Jul 13 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Ray Chandler, Nov 17 2008
Offset changed to 1 by Michel Marcus, Jan 16 2014
STATUS
approved