login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected functions (or mapping patterns) on n unlabeled points, or number of rings and branches with n edges.
(Formerly M1182 N0455)
18

%I M1182 N0455 #72 Jun 10 2024 15:34:45

%S 1,2,4,9,20,51,125,329,862,2311,6217,16949,46350,127714,353272,981753,

%T 2737539,7659789,21492286,60466130,170510030,481867683,1364424829,

%U 3870373826,10996890237,31293083540,89173833915,254445242754,726907585652,2079012341822

%N Number of connected functions (or mapping patterns) on n unlabeled points, or number of rings and branches with n edges.

%C A000081 + A027852 + A029852 + A029853 + A029868 + ... - _Geoffrey Critzer_, Oct 12 2012

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.

%D R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A002861/b002861.txt">Table of n, a(n) for n = 1..1000</a> (first 500 terms from C. G. Bower)

%H A. L. Agore, A. Chirvasitu, and G. Militaru, <a href="https://arxiv.org/abs/2303.06700">The set-theoretic Yang-Baxter equation, Kimura semigroups and functional graphs</a>, arXiv:2303.06700 [math.QA], 2023.

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H Oscar Defrain, Antonio E. Porreca and Ekaterina Timofeeva, <a href="https://doi.org/10.1016/j.dam.2024.05.030">Polynomial-delay generation of functional digraphs up to isomorphism</a>, Disc. Appl. Math., vol 357 (2024), pp. 24-33.

%H Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 480

%H R. K. Guy, <a href="/A000081/a000081.pdf">Letter to N. J. A. Sloane, 1988-04-12</a> (annotated scanned copy)

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=118">Encyclopedia of Combinatorial Structures 118</a>

%F CIK transform of A000081.

%p spec2861 := [B, {A=Prod(Z,Set(A)), B=Cycle(A)}, unlabeled]; [seq(combstruct[count](spec2861,size=n), n=1..27)];

%t Needs["Combinatorica`"];

%t nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i],{i, 1, nn}]; Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k * i), {i, nn}], {k, 1, nn}][[j]], {j, nn}], x], nn], {n, 30}]] (* _Geoffrey Critzer_, Oct 12 2012, after code given by _Robert A. Russell_ in A000081 *)

%t M = 66; A = Table[1, {M + 1}]; For[n = 1, n <= M, n++, A[[n + 1]] = 1/n * Sum[Sum[d * A[[d]], {d, Divisors[k]}] * A[[n - k + 1]], {k, n}]]; A81 = {0} ~ Join ~ A; H[t_] = A81.t^Range[0, Length[A81] - 1]; L = Sum[EulerPhi[j]/j * Log[1/(1 - H[x^j])], {j, M}] + O[x]^M; CoefficientList[L, x] // Rest (* _Jean-François Alcover_, Dec 28 2019, after _Joerg Arndt_ *)

%o (PARI)

%o N=66; A=vector(N+1, j, 1);

%o for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );

%o A000081=concat([0], A);

%o H(t)=subst(Ser(A000081, 't), 't, t);

%o x='x+O('x^N);

%o L=sum(j=1,N, eulerphi(j)/j * log(1/(1-H(x^j))));

%o Vec(L)

%o \\ _Joerg Arndt_, Jul 10 2014

%Y Row sums of A339428.

%Y Cf. A000081, A001372.

%Y Cf. A027852, A029852, A029853, A029868.

%K nonn,nice

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Philippe Flajolet_ and _Paul Zimmermann_, Mar 15 1996