The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002857 Number of Post functions of n variables. (Formerly M3078 N1249) 5
 1, 3, 20, 996, 9333312, 6406603084568576, 16879085743296493582043922521915392, 717956902513121252476003434439730211917452457474409186632352788205535232 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). Wheeler, Roger F.; Complete propositional connectives. Z. Math. Logik Grundlagen Math. 7 1961 185-198. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..12 R. F. Wheeler, Complete propositional connectives, Z. Math. Logik Grundlagen Math. 7 1961 185-198. [Annotated scanned copy] R. F. Wheeler, An asymptotic formula for the number of complete propositional connectives, Z. Math. Logik Grundlagen Math. 8 (1962), 1-4. [Annotated scanned copy] MAPLE b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),       h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,       add(b(n-i*j, i-1, [l[], i\$j])/j!/i^j, j=0..n/i)))     end: a:= n-> b(n\$2, [])/4: seq(a(n), n=1..8);  # Alois P. Heinz, Aug 14 2019 MATHEMATICA b[n_, i_, l_] := If[n==0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][LCM @@ l], If[i < 1, 0, Sum[b[n - i j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]]; a[n_] := b[n, n, {}]/4; Array[a, 8] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *) CROSSREFS Equals A000612/2 and A003180/4. Sequence in context: A108699 A162134 A296408 * A203314 A174652 A024011 Adjacent sequences:  A002854 A002855 A002856 * A002858 A002859 A002860 KEYWORD nonn AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Feb 23 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 13:40 EDT 2021. Contains 343947 sequences. (Running on oeis4.)