login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345328
a(n) is the smallest integer k>1 such that |log(k)-round(log(k))| is smaller than 10^(-n).
1
3, 20, 1096, 2981, 59874, 442413, 8886110, 65659969, 178482301, 3584912846, 26489122130, 195729609429, 3931334297144, 78962960182680, 214643579785916, 4311231547115195, 31855931757113756, 86593400423993747, 12851600114359308275, 34934271057485095348
OFFSET
1,1
COMMENTS
In other words, a(n) is the smallest integer k>1 such that the distance between log(k) and nearest integer to log(k) is smaller than 10^(-n).
EXAMPLE
For n=4 a(n)=2981, because 2981 is the smallest integer greater than 1 such that |log(2981)-round(2981)| = 0.00001409... < 10^(-4).
MAPLE
n := 1: for i from 2 to 10^10 do if abs(evalf(log(i)) - floor(log(i) + 1/2)) < 10^(-n) then print(i); n := n + 1 fi end do;
PROG
(C++) #include <iostream>
#include <cmath>
using namespace std; int main(int argc, char** argv) {long double n=1; int q=2; for(n=1; n<=9; n++){for(int i=q; i<=100000000000; i++){long double k=log(i); if(abs(k-round(k))<pow(10, -n)){cout<<i<<", "; q=i; break; }}}}
(PARI) \\ suitable precision needed.
a(n)={my(epsilon=1.0/10^n); for(k=1, oo, my(t=floor(exp(k))); if(k-log(t)<epsilon, while(k-log(t-1)<epsilon, t--); return(t)); if(log(t+1)-k<epsilon, return(t+1)))} \\ Andrew Howroyd, Jun 14 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrzej Kukla, Jun 14 2021
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Jun 14 2021
STATUS
approved