OFFSET
1,1
COMMENTS
In other words, a(n) is the smallest integer k>1 such that the distance between log(k) and nearest integer to log(k) is smaller than 10^(-n).
EXAMPLE
For n=4 a(n)=2981, because 2981 is the smallest integer greater than 1 such that |log(2981)-round(2981)| = 0.00001409... < 10^(-4).
MAPLE
n := 1: for i from 2 to 10^10 do if abs(evalf(log(i)) - floor(log(i) + 1/2)) < 10^(-n) then print(i); n := n + 1 fi end do;
PROG
(C++) #include <iostream>
#include <cmath>
using namespace std; int main(int argc, char** argv) {long double n=1; int q=2; for(n=1; n<=9; n++){for(int i=q; i<=100000000000; i++){long double k=log(i); if(abs(k-round(k))<pow(10, -n)){cout<<i<<", "; q=i; break; }}}}
(PARI) \\ suitable precision needed.
a(n)={my(epsilon=1.0/10^n); for(k=1, oo, my(t=floor(exp(k))); if(k-log(t)<epsilon, while(k-log(t-1)<epsilon, t--); return(t)); if(log(t+1)-k<epsilon, return(t+1)))} \\ Andrew Howroyd, Jun 14 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrzej Kukla, Jun 14 2021
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Jun 14 2021
STATUS
approved