Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jun 14 2021 16:04:43
%S 3,20,1096,2981,59874,442413,8886110,65659969,178482301,3584912846,
%T 26489122130,195729609429,3931334297144,78962960182680,
%U 214643579785916,4311231547115195,31855931757113756,86593400423993747,12851600114359308275,34934271057485095348
%N a(n) is the smallest integer k>1 such that |log(k)-round(log(k))| is smaller than 10^(-n).
%C In other words, a(n) is the smallest integer k>1 such that the distance between log(k) and nearest integer to log(k) is smaller than 10^(-n).
%e For n=4 a(n)=2981, because 2981 is the smallest integer greater than 1 such that |log(2981)-round(2981)| = 0.00001409... < 10^(-4).
%p n := 1: for i from 2 to 10^10 do if abs(evalf(log(i)) - floor(log(i) + 1/2)) < 10^(-n) then print(i); n := n + 1 fi end do;
%o (C++) #include <iostream>
%o #include <cmath>
%o using namespace std; int main(int argc, char** argv) {long double n=1; int q=2; for(n=1; n<=9; n++){for(int i=q; i<=100000000000; i++){long double k=log(i); if(abs(k-round(k))<pow(10, -n)){cout<<i<<", "; q=i; break; }}}}
%o (PARI) \\ suitable precision needed.
%o a(n)={my(epsilon=1.0/10^n); for(k=1, oo, my(t=floor(exp(k))); if(k-log(t)<epsilon, while(k-log(t-1)<epsilon, t--); return(t)); if(log(t+1)-k<epsilon, return(t+1)))} \\ _Andrew Howroyd_, Jun 14 2021
%Y Cf. A000193, A000227, A079663, A080021.
%K nonn
%O 1,1
%A _Andrzej Kukla_, Jun 14 2021
%E Terms a(10) and beyond from _Andrew Howroyd_, Jun 14 2021