login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Stirling numbers of second kind: 10th column of Stirling2 triangle A008277.
5

%I #24 Dec 02 2020 08:18:59

%S 1,55,1705,39325,752752,12662650,193754990,2758334150,37112163803,

%T 477297033785,5917584964655,71187132291275,835143799377954,

%U 9593401297313460,108254081784931500,1203163392175387500,13199555372846848005,143197070509423605675

%N Stirling numbers of second kind: 10th column of Stirling2 triangle A008277.

%D See A000771.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).

%F G.f.: x^10/Product_{k=1..10} (1-k*x).

%F E.g.f.: ((exp(x)-1)^10)/10!.

%F a(n) = det(|s(i+10,j+9)|, 1 <= i,j <= n-10), where s(n,k) are Stirling numbers of the first kind. - _Mircea Merca_, Apr 06 2013

%t lst={};Do[f=StirlingS2[n, 10];AppendTo[lst, f], {n, 10, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008 *)

%t CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x) (1 - 9 x) (1 - 10 x)), {x, 0, 25}], x] (* _Vladimir Joseph Stephan Orlovsky_, Jun 20 2011 *)

%t StirlingS2[Range[10,35],10] (* _Harvey P. Dale_, Nov 07 2020 *)

%Y Cf. A000225, A000392, A000453, A000481, A000770, A000771, A049434, A049447. a(n) = A008277(n, 10).

%K easy,nonn

%O 10,2

%A _Wolfdieter Lang_