|
|
A045373
|
|
Primes congruent to {0, 1, 2, 4} mod 7.
|
|
10
|
|
|
2, 7, 11, 23, 29, 37, 43, 53, 67, 71, 79, 107, 109, 113, 127, 137, 149, 151, 163, 179, 191, 193, 197, 211, 233, 239, 263, 277, 281, 317, 331, 337, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 457, 463, 487
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes of the form x^2 + xy + 2y^2, discriminant -7. - N. J. A. Sloane, Jun 01 2014
Primes of the form x^2 - xy + 2y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Also, primes which are squares (mod 7) (or, (mod 14): see A191017 for a sequence formerly defined as such). - M. F. Hasler, Jan 15 2016
|
|
LINKS
|
|
|
MATHEMATICA
|
Select[Prime[Range[500]], MemberQ[{0, 1, 2, 4}, Mod[#, 7]]&] (* Vincenzo Librandi, Jul 13 2012 *)
|
|
PROG
|
(Magma) [p: p in PrimesUpTo(740)|p mod 7 in [0, 1, 2, 4]]; // Vincenzo Librandi, Jul 13 2012
(PARI) select(p->issquare(Mod(p, 7))&&isprime(p), [1..1000]) \\ M. F. Hasler, Jan 15 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|