|
|
A191017
|
|
Primes with Kronecker symbol (p|14) = 1.
|
|
20
|
|
|
3, 5, 13, 19, 23, 59, 61, 71, 79, 83, 101, 113, 127, 131, 137, 139, 151, 157, 173, 181, 191, 193, 227, 229, 233, 239, 251, 263, 269, 281, 283, 293, 307, 337, 349, 359, 397, 401, 419, 431, 449, 457, 461, 463, 467, 487, 509, 523, 563, 569, 587, 599, 617, 619
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Originally incorrectly named "Primes that are squares mod 14", which is sequence A045373. - M. F. Hasler, Jan 15 2016
Conjecture: primes congruent to {1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45} mod 56. - Vincenzo Librandi, Jun 22 2016
Rational primes that decompose in the field Q(sqrt(-14)).
These are primes p such that either one of (a) p == 1, 2, 4 (mod 7), p == 1, 7 (mod 8) or (b) p == 3, 5, 6 (mod 7), p == 3, 5 (mod 8) holds. So the conjecture above is correct. (End)
|
|
LINKS
|
|
|
MATHEMATICA
|
Select[Prime[Range[200]], JacobiSymbol[#, 14]==1&]
|
|
PROG
|
(Magma) [p: p in PrimesUpTo(619) | KroneckerSymbol(p, 14) eq 1]; // Vincenzo Librandi, Sep 11 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|