login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes congruent to {0, 1, 2, 4} mod 7.
12

%I #29 Sep 08 2022 08:44:55

%S 2,7,11,23,29,37,43,53,67,71,79,107,109,113,127,137,149,151,163,179,

%T 191,193,197,211,233,239,263,277,281,317,331,337,347,359,373,379,389,

%U 401,421,431,443,449,457,463,487

%N Primes congruent to {0, 1, 2, 4} mod 7.

%C Primes of the form x^2 + xy + 2y^2, discriminant -7. - _N. J. A. Sloane_, Jun 01 2014

%C Primes of the form x^2 - xy + 2y^2 with x and y nonnegative. - _T. D. Noe_, May 07 2005

%C Also, primes which are squares (mod 7) (or, (mod 14): see A191017 for a sequence formerly defined as such). - _M. F. Hasler_, Jan 15 2016

%H Vincenzo Librandi, <a href="/A045373/b045373.txt">Table of n, a(n) for n = 1..1000</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t Select[Prime[Range[500]],MemberQ[{0,1,2,4},Mod[#,7]]&] (* _Vincenzo Librandi_, Jul 13 2012 *)

%o (Magma) [p: p in PrimesUpTo(740)|p mod 7 in [0, 1, 2, 4]]; // _Vincenzo Librandi_, Jul 13 2012

%o (PARI) select(p->issquare(Mod(p,7))&&isprime(p),[1..1000]) \\ _M. F. Hasler_, Jan 15 2016

%Y Primes in A028951.

%Y Cf. A191017, A003625 (complement).

%K nonn

%O 1,1

%A _N. J. A. Sloane_