login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144707
Diagonal sums of the triangle A132047.
1
1, 1, 2, 7, 11, 22, 35, 61, 98, 163, 263, 430, 695, 1129, 1826, 2959, 4787, 7750, 12539, 20293, 32834, 53131, 85967, 139102, 225071, 364177, 589250, 953431, 1542683, 2496118, 4038803, 6534925, 10573730, 17108659, 27682391, 44791054, 72473447, 117264505
OFFSET
0,3
FORMULA
G.f.: (1 - x^2 + 4*x^3 + 2*x^4) / ((1 - x^2)*(1 - x - x^2)).
a(n) = 3*Fibonacci(n+1) - 3 - (-1)^n + 2*0^n.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>4. - Philippe Deléham, Dec 16 2008
From Colin Barker, Jul 12 2017: (Start)
a(n) = (3*2^(-n-1)*((1 + sqrt(5))^(n+1) - (1-sqrt(5))^(n+1))) / sqrt(5) - 4 for n>0 and even.
a(n) = (3*2^(-n-1)*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1)))/sqrt(5) - 2 for n odd.
(End)
MATHEMATICA
Table[3*Fibonacci[n+1] -3 -(-1)^n +2*Boole[n==0], {n, 0, 40}] (* G. C. Greubel, Jun 16 2022 *)
PROG
(PARI) Vec((1-x^2+4*x^3+2*x^4) / ((1-x^2)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
(SageMath) [3*fibonacci(n+1) -2 -2*((n+1)%2) +2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
CROSSREFS
Cf. A000045.
Sequence in context: A358703 A160698 A294114 * A045373 A075431 A184799
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 19 2008
STATUS
approved