The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267438 Abatzoglou-Silverberg-Sutherland-Wong primes: primes in A267437. 3
 11, 23, 67, 151, 487, 2039, 4211, 524087, 1046579, 1073691427, 1099510801043, 2251799727348791, 36028797132202711, 4611686014335996451, 36893488155919083943, 147573952565445262007, 604462909807989625559191, 77371252455344850805618531, 618970019642688992452665703, 5070602400912917643802528801507 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Abatzoglou, Silverberg, Sutherland, & Wong give a quasi-quadratic algorithm for determining membership in this sequence. LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..42 Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong, Deterministic elliptic curve primality proving for a special sequence of numbers, Tenth Algorithmic Number Theory Symposium (ANTS X, 2012), pp. 1-20. MATHEMATICA Select[RecurrenceTable[{a[n] == 4 a[n - 1] - 7 a[n - 2] + 8 a[n - 3] - 4 a[n - 4], a[2] == 11, a[3] == 23, a[4] == 67, a[5] == 151}, a, {n, 2, 100}], PrimeQ] (* Michael De Vlieger, Jan 24 2016 *) PROG (PARI) A267437(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[11; 11; 23; 67])[1, 1] list(lim)=my(v=List(), t, n); while((t=A267437(n++))<=lim, if(ispseudoprime(t), listput(v, t))); Vec(v) (PARI) See Greathouse link in A267439. CROSSREFS Cf. A267437, A267439. Sequence in context: A068844 A139905 A267437 * A102273 A195463 A104066 Adjacent sequences:  A267435 A267436 A267437 * A267439 A267440 A267441 KEYWORD nonn AUTHOR Charles R Greathouse IV, Jan 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 01:49 EDT 2021. Contains 346294 sequences. (Running on oeis4.)