login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267439
Indices of (Abatzoglou-Silverberg-Sutherland-Wong) primes in A267437.
3
2, 3, 4, 5, 7, 9, 10, 17, 18, 28, 38, 49, 53, 60, 63, 65, 77, 84, 87, 100, 109, 147, 170, 213, 235, 287, 319, 375, 467, 489, 494, 543, 643, 684, 725, 1129, 1428, 2259, 2734, 2828, 3148, 3230, 3779, 5537, 5759, 7069, 7189, 7540, 7729
OFFSET
1,1
REFERENCES
Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong, Deterministic elliptic curve primality proving for a special sequence of numbers, Tenth Algorithmic Number Theory Symposium (ANTS X, 2012), pp. 1-20.
MATHEMATICA
s = RecurrenceTable[{a[n] == 4 a[n - 1] - 7 a[n - 2] + 8 a[n - 3] - 4 a[n - 4], a[2] == 11, a[3] == 23, a[4] == 67, a[5] == 151}, a, {n, 2, 4000}]; Flatten@ Position[s, _Integer?PrimeQ] + 1 (* Michael De Vlieger, Jan 24 2016 *)
PROG
(PARI) A267437(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[9; 11; 11; 23])[1, 1]
list(lim)=my(v=List()); for(n=2, lim, if(ispseudoprime(A267437(n)), listput(v, n))); Vec(v)
(PARI) See Greathouse link.
CROSSREFS
Sequence in context: A055600 A139528 A178434 * A262691 A117290 A286972
KEYWORD
nonn
AUTHOR
STATUS
approved