Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 27 2016 08:39:55
%S 2,3,4,5,7,9,10,17,18,28,38,49,53,60,63,65,77,84,87,100,109,147,170,
%T 213,235,287,319,375,467,489,494,543,643,684,725,1129,1428,2259,2734,
%U 2828,3148,3230,3779,5537,5759,7069,7189,7540,7729
%N Indices of (Abatzoglou-Silverberg-Sutherland-Wong) primes in A267437.
%D Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong, Deterministic elliptic curve primality proving for a special sequence of numbers, Tenth Algorithmic Number Theory Symposium (ANTS X, 2012), pp. 1-20.
%H Charles R Greathouse IV, <a href="/A267439/b267439.txt">Table of n, a(n) for n = 1..62</a>
%H Charles R Greathouse IV, <a href="/A267439/a267439.gp.txt">GP script for computing terms using the Abatzoglou-Silverberg-Sutherland-Wong algorithm</a>
%t s = RecurrenceTable[{a[n] == 4 a[n - 1] - 7 a[n - 2] + 8 a[n - 3] - 4 a[n - 4], a[2] == 11, a[3] == 23, a[4] == 67, a[5] == 151}, a, {n, 2, 4000}]; Flatten@ Position[s, _Integer?PrimeQ] + 1 (* _Michael De Vlieger_, Jan 24 2016 *)
%o (PARI) A267437(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-4,8,-7,4]^n*[9;11;11;23])[1,1]
%o list(lim)=my(v=List()); for(n=2,lim, if(ispseudoprime(A267437(n)), listput(v,n))); Vec(v)
%o (PARI) See Greathouse link.
%Y Cf. A267437, A267438.
%K nonn
%O 1,1
%A _Charles R Greathouse IV_, Jan 15 2016