OFFSET
0,3
FORMULA
b(0) = 1, b(n) = (1/n) * Sum_{k=1..n} k * A000041(k) * b(n-k), a(n) = numerator of b(n).
EXAMPLE
1, 1, 5/2, 31/6, 265/24, 2621/120, 31621/720, 85319/1008, 6574961/40320, ...
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[-1 + 1/Product[1 - x^k, {k, 1, nmax}]], {x, 0, nmax}], x] // Numerator
b[0] = 1; b[n_] := b[n] = (1/n) Sum[k PartitionsP[k] b[n - k], {k, 1, n}]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn,frac,new
AUTHOR
Ilya Gutkovskiy, Jan 14 2025
STATUS
approved