Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 May 14 2020 08:59:30
%S 1,5,31,258,2702,33821,492978,8198218,153136209,3173544162,
%T 72241986729,1791612993205,48074653669593,1387590910289915,
%U 42863756641047136,1410904918289665343,49296029555617568097,1822020250023113834772,71023629427964322798782
%N Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) such that (0,1) is never used directly before or after (1,0) or (1,1).
%H Alois P. Heinz, <a href="/A320512/b320512.txt">Table of n, a(n) for n = 0..402</a>
%F a(n) ~ c * n! * 2^n * n^(7/4), where c = 0.1758027947... - _Vaclav Kotesovec_, May 14 2020
%p b:= proc(x, y, i) option remember; (l-> `if`(min(x, y)<0, 0,
%p `if`(max(x, y)=0, [1$2], add(`if`({i, j} in {{1, 2}, {3, 5},
%p {4, 5}}, 0, (p-> p+[0, p[1]])(b(x-l[j][1], y-l[j][2], j))),
%p j=1..5))))([[-1, 1], [1, -1], [1, 1], [1, 0], [0, 1]])
%p end:
%p a:= n-> b(n, 0$2)[2]:
%p seq(a(n), n=0..20);
%t b[x_, y_, i_] := b[x, y, i] = With[{l = {{-1, 1}, {1, -1}, {1, 1}, {1, 0}, {0, 1}}}, If[Min[x, y] < 0, {0, 0}, If[Max[x, y] == 0, {1, 1}, Sum[If[ MemberQ[{{1, 2}, {3, 5}, {4, 5}}, Sort@{i, j}], {0, 0}, Function[p, p + {0, p[[1]]}][b[x - l[[j]][[1]], y - l[[j]][[2]], j]]], {j, 5}]]]];
%t a[n_] := b[n, 0, 0][[2]];
%t a /@ Range[0, 20] (* _Jean-François Alcover_, May 14 2020, after Maple *)
%Y Cf. A317985.
%K nonn,walk
%O 0,2
%A _Alois P. Heinz_, Oct 22 2018